M1.B

M2.B

M3.(a) (i) $2.16 \div 241.8=\underline{0.00893}$ or $8.93 \times 10^{-3}(\mathrm{~mol})$ Penalise if not 3 significant figures.
(ii) $\mathrm{n}\left(\mathrm{O}_{2}\right)=0.00893 \times 0.75(=0.00670 \mathrm{~mol})$ Allow part(i) $\times 0.75$.
(iii) $\mathrm{M} 1=\mathrm{T}=566 \mathrm{~K}$ and $\mathrm{P}=100000 \mathrm{~Pa}$ If M1 incorrect can only score M2 and M3.

$$
\mathrm{M} 2=\text { Moles } \mathrm{NO}_{2}=0.0268(\mathrm{~mol})
$$

If M2 incorrect can only score M1 and M3.
Allow moles of $\mathrm{NO}_{2}=$ student's answer to part (i) $\times 3$. OR part (ii) $\times 4$ and consequential M4. Minimum of 2 significant figures.

If M3 incorrect can only score M1 and M2.

$$
\mathrm{M} 4=0.00126\left(\mathrm{~m}^{3}\right) \text { or } 1.26 \times 10^{-3}\left(\mathrm{~m}^{3}\right)
$$

Allow minimum of 2 significant figures.
Allow no units but incorrect units loses M4.

If 0.00642 moles used:

$M 2=$ Moles $\mathrm{NO}_{2}=0.0193 \mathrm{~mol}$.

M4 $=9.06 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \quad$ allow 9.06 to 9.08×10^{-4}.
(b) (Thermal) decomposition

Do not allow catalytic decomposition.
(c) Other products are gases / other products escape easily Allow no other solid (or liquid) product.

M4.(a) $\quad \mathrm{Mol} \mathrm{Pb}=8.14 / 207(.2)(=0.0393 \mathrm{~mol})$
M1 and M2 are process marks

$$
\mathrm{Mol} \mathrm{HNO}_{3}=0.0393 \times 8 / 3=0.105 \mathrm{~mol}
$$

Allow mark for M1 $\times 8 / 3$ or M1 $\times 2.67$

$$
\mathrm{Vol} \mathrm{HNO} 33=0.105 / 2=0.0524\left(\mathrm{dm}^{3}\right)
$$

Accept range 0.0520 to 0.0530
No consequential marking for M3
Answer to 3 sig figs required

```
\(\mathrm{n}=\mathrm{pV} / \mathrm{RT} \quad\left(=\underline{101000 \times 638 \times 10^{-6}}\right)\)
298 )
Can score \(M 2\) with incorrect conversion of \(p\) and \(V\)
If T incorrect lose M1 and M3
```

$\underline{0.026(0)(m o l)}$
If answer correct then award 3 marks
Allow answers to 2 sig figs or more
$26.02=1$
If transcription error lose M3 only
(c) (i) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+(1) \mathrm{O}_{2}(\mathrm{~g})$

Allow multiples
Allow fractions
(ii) Decomposition not complete / side reactions / by-products / some $\left(\mathrm{NO}_{2}\right)$ escapes / not all reacts / impure $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Ignore reversible / not heated enough / slow
(iii) Hard to separate O_{2} from NO_{2} / hard to separate the 2 gases

Allow mixture of gases
Not 'all products are gases'

M5. (a) $\quad P=100000(\mathrm{~Pa})$ and $V=5.00 \times 10^{-3}\left(\mathrm{~m}^{3}\right)$
M1 is for correctly converting P and V in any expression or list Allow 100 (kPa) and $5\left(\mathrm{dm}^{3}\right)$ for M1.
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{100000 \times 5.00 \times 10^{-3}}{8.31 \times 298}$
M2 is correct rearrangement of $P V=n R T$
$=0.202$ moles (of gas produced)
This would score M1 and M2.Therefore $\frac{0.202}{5}=0.0404$ moles $\mathrm{B}_{2} \mathrm{O}_{3}$M3 is for their answer divided by 5
Mass of $\mathrm{B}_{2} \mathrm{O}_{3}=0.0404 \times 69.6$M4 is for their answer to M3 $\times 69.6$
$=\underline{2.81(g)}$M5 is for their answer to 3 sig figures.2.81 (g) gets 5 marks.
(b) $\mathrm{B}+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{BCl}_{3}$Accept multiples.
$\underline{3}$ bondsPairs repel equally/ by the same amountDo not allow any lone pairs if a diagram is shown.
(c) (i) $43.2 / 117.3\left(=0.368\right.$ moles $\left.\mathrm{BCl}_{3}\right)$

$$
\begin{aligned}
& \text { Conc } \mathrm{HCl}=\frac{1.105 \times 1000}{500} \\
& \text { Allow moles of } \mathrm{HCl} \times 1000 / 500
\end{aligned}
$$

$$
=\underline{2.20} \text { to } 2.22 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Allow 2.2
Allow 2 significant figures or more
(ii) $\mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{BO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Allow alternative balanced equations to form acid salts.
Allow $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaBO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $\frac{10.8}{120.3}(\times 100)$

Mark is for both M_{r} values correctly as numerator and denominator.
8.98(\%) Allow 9(\%).

Sell the HCl
(e) Alternative method

$$
\begin{aligned}
& \mathrm{CI}=86.8 \% \\
& C I=142 \mathrm{~g}
\end{aligned}
$$

B	Cl	
$\frac{13.2}{10.8}$	$\frac{86.8}{35.5}$	
	B	Cl
	$\frac{21.6}{10.8}$	$\frac{142}{35.5}$

BCl_{2} has M_{r} of 81.8 so
$81.8 \times 2=163.6$
Formula $=\mathrm{B}_{2} \mathrm{Cl}_{4}$
$\mathrm{B}_{2} \mathrm{Cl}_{4}$
Allow 4 marks for correct answer with working shown.
Do not allow $\left(B C l_{2}\right)_{2}$
1
[20]

M6.(a) $\quad \mathrm{P}=100000 \mathrm{~Pa}$ and $\mathrm{T}=298 \mathrm{~K}$
Wrong conversion of V or incorrect conversion of P / T lose M1 + M3

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}} \text { or } \frac{100000 \times 4.31}{8.31 \times 298}
$$

If not rearranged correctly then cannot score M2 and M3
$n($ total $)=174(.044)$
$n(N O)=\underline{69.6}$

Allow student's $M 3 \times 4 / 10$ but must be to 3 significant figures
(b) (i)
$\frac{3000}{17}$
Allow answer to 2 significant figures or more
176.5

Allow 176-177
But if answer $=0.176-0.18$ (from 3/17) then allow 1 mark
(ii) $176.47 \times 46=8117.62$
$M 1$ is for the answer to (b)(i) $\times 46$. But lose this mark if $46 \div$ 2 at any stage However if $92 \div 2$ allow M1

$$
8117.62 \times \frac{80}{100}(=6494 \mathrm{~g})
$$

M2 is for M1 $\times 80 / 100$
$\frac{6494}{1000}=6.5$
$M 3$ is for the answer to $M 2 \div 1000$ to min 2 significant figures (kg)

OR

If 163 mol used:
$163 \times 46=7498$ (1)
$7498 \times \frac{80}{100}=5998.4 \mathrm{~g}(1)$
6.00 kg (1)
(c) $0.543 \times \frac{2}{3}(=0.362)$

$$
\text { if not } \times \frac{2}{3} \mathrm{CE}=0 / 2
$$

$$
0.362 \times \frac{1000}{250}=1.45\left(\mathrm{moldm}^{-3}\right)
$$

Allow 1.447 - $1.5\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ for 2 marks
(d) NO_{2} contributes to acid rain / is an acid gas / forms $\mathrm{HNO}_{3} / \mathrm{NO}_{2}$ is toxic / photochemical smog

Ignore references to water, breathing problems and ozone layer.
Not greenhouse gas
(e) Ensure the ammonia is used up / ensure complete reaction or combustion OR

Maximise the yield of nitric acid or products
(f) Neutralisation

Allow acid vs alkali or acid base reaction

