[1]

1

1

1

M2.B

M3.(a) (i) 2.16 ÷ 241.8 = <u>0.00893</u> or 8.93 × 10⁻³ (mol) *Penalise if not 3 significant figures.*

> (ii) $n(O_2) = 0.00893 \times 0.75$ (= 0.00670 mol) Allow part(i) $\times 0.75$.

(iii) M1 = T = 566 K and P = 100 000 Pa If M1 incorrect can only score M2 and M3.

> $M2 = Moles NO_{2} = 0.0268 (mol)$ If M2 incorrect can only score M1 and M3. Allow moles of NO_{2} = student's answer to part (i) × 3. **OR** part (ii) × 4 and consequential M4. Minimum of 2 significant figures.

 $M3 = V = {p \over p} \quad OR = {0.0268 \times 8.31 \times 566 \over 100\ 000}$

If M3 incorrect can only score M1 and M2.

1

1

	M4 = 0.00126 (m ³) or 1.26 × 10 ⁻³ (m ³) Allow minimum of 2 significant figures. Allow no units but incorrect units loses M4. If 0.00642 moles used: M2 = Moles NO ₂ = 0.0193 mol. $M3 = V = P = \frac{0.0193 \times 8.31 \times 566}{100\ 000}$. M4 = 9.06 × 10 ⁻⁴ (m ³) allow 9.06 to 9.08 × 10 ⁻⁴ .		1
(b) (The	ermal) decomposition Do not allow catalytic decomposition.		1
(c) Othe	er products are gases / other products escape easily Allow no other solid (or liquid) product.		1 [8]
M4. (a) Mol Pb	o = 8.14 / 207(.2) (= 0.0393 mol) M1 and M2 are process marks	1	
Mol H	HNO ₃ = 0.0393 × 8 / 3 = 0.105 mol Allow mark for M1 × 8/3 or M1 × 2.67	1	
Vol H	HNO ₃ = 0.105 / 2 = 0.0524 (dm ³) Accept range 0.0520 to 0.0530 No consequential marking for M3 Answer to 3 sig figs required	1	
(b) 1010	000 (Pa) and 638 × 10-₀ (m₃)	1	

	n = p 298	oV/RT				ect conversi	on of p and	· ·	8.31 ×	1
	<u>0.02</u>	<u>6(</u> 0) (r	If ans Allow 26.02	answers to	o 2 sig fig					1
(c)	(i)	2Pb(Allow) → 2 PbO multiples fractions	(s)+ 4NO₂	(g) + (1)O₂(g)			1
	(ii)		pes / n	ot all react	s / impure	ide reaction Pb(NO₃)₂ ated enough	• •	lucts	s / some (N	O ₂) 1
	(iii)	Hard	Allow	arate O₂ fro <i>mixture of</i> <i>II products</i>	gases	nard to sepa s'	arate the 2	gas	es	1

M5. (a) P = 100 000 (Pa) and V = 5.00 x 10⁻³ (m³) M1 is for correctly converting P and V in any expression or list Allow 100 (kPa) and 5 (dm³) for M1.

 $n = \frac{PV}{RT} = \frac{100\ 000 \times 5.00 \times 10^{-3}}{8.31 \times 298}$

M2 is correct rearrangement of PV = nRT

1

[9]

	= 0.202 moles (of gas produced) This would score M1 and M2.				
	Therefore $\frac{0.202}{5} = 0.0404$ moles B ₂ O ₃ M3 is for their answer divided by 5	1			
	Mass of B ₂ O ₃ = 0.0404 x 69.6 <i>M4 is for their answer to M3 x 69.6</i>	1			
	= <u>2.81</u> (g) M5 is for their answer to 3 sig figures. 2.81 (g) gets 5 marks.	1			
(b)	B + 1.5 $Cl_2 \rightarrow BCl_3$ Accept multiples.	1			
	<u>3</u> bonds	1			
	Pairs repel <u>equally</u> / by the <u>same amount</u> Do not allow any lone pairs if a diagram is shown.	1			
(c)	(i) 43.2/117.3 (= 0.368 moles BCl₃)	1			
	0.368 x 3 (= 1.105 moles HCl) Allow their BCl₃ moles x 3	1			

$$\begin{aligned} & \bigcap_{\text{Conc HCl}} \frac{1.105 \times 1000}{500} \\ & \text{Allow moles of HCl} \times 1000 / 500 \end{aligned} \qquad 1 \\ & = 2.20 \text{ to } 2.22 \text{ mol dm}^{\circ} \\ & \text{Allow 2.2} \\ & \text{Allow 2.3 ganificant figures or more} \end{aligned} \qquad 1 \\ & \text{(ii)} \quad \text{H,BO}_{,+} 3\text{NaOH} \rightarrow \text{Na,BO}_{,+} 3\text{H,O} \\ & \text{Allow alternative balanced equations to form acid salts.} \\ & \text{Allow H,BO}_{,+} \text{ NaOH} \rightarrow \text{NaBO}_{,+} 2\text{H,O} \end{aligned} \qquad 1 \\ & \text{(d)} \quad \frac{10.8}{120.3} (\times 100) \\ & \text{Mark is for both M, values correctly as numerator and denominator.} \end{aligned} \qquad 1 \\ & \text{8.98(\%)} \\ & \text{Allow 9(\%).} \end{aligned} \qquad 1 \\ & \text{Sell the HCl} \end{aligned} \qquad 1 \\ & \text{(e)} \quad \text{Alternative method} \\ & \text{Cl} = 86.8\% \\ & \text{Cl} = 142 \text{ g} \end{aligned} \qquad 1 \end{aligned}$$

B 13.2 10.8	Cl 86.8 35.5 B 21.6 10.8	C/ 142 35.5	
			1
1.22	2.45 or ratio 2:4 ratio	1:2 or BCl ₂	1
BCl₂ has M 81.8 x 2 = Formula =	B_2CI_4 B_2CI_4	ks for correct answer with working shown.	

Do not allow (BCl₂)₂

[20]

1

1

1

1

M6.(a) P = 100 000 Pa and T = 298 K *Wrong conversion of V or incorrect conversion of P / T lose M1* + *M3*

$$n = \frac{PV}{RT} \text{ or } \frac{100\ 000 \times 4.31}{8.31 \times 298}$$
If not rearranged correctly then cannot score M2 and M3

n(total) = 174(.044)

n (NO) = <u>69.6</u>

PhysicsAndMathsTutor.com

(i)
$$\frac{3000}{17}$$

Allow answer to 2 significant figures or more

176.5

(b)

Allow 176 – 177 But if answer = 0.176 – 0.18 (from 3 / 17) then allow 1 mark

(ii) 176.47 × 46 = 8117.62
 M1 is for the answer to (b)(i) × 46. But lose this mark if 46 ÷ 2 at any stage
 However if 92 ÷ 2 allow M1

$$8117.62 \times \frac{80}{100} (= 6494 \text{ g})$$

M2 is for M1 × 80 / 100

 $\frac{6494}{1000} = 6.5$

M3 is for the answer to M2 ÷ 1000 to min 2 significant figures (kg)

OR

lf 163 mol used: 163 × 46 = 7498 (1)

$$7498 \times \frac{80}{100} = 5998.4 g(1)$$

6.00 kg (1)

1

1

1

1

1

1

(c)
$$0.543 \times \frac{2}{3} (=0.362)$$

if not $\times \frac{2}{3} CE = 0/2$

$$0.362 \times \frac{1000}{250} = 1.45 (\text{mol dm}^{-3})$$

Allow 1.447 - 1.5 (mol dm⁻³) for 2 marks

- (d) NO₂ contributes to acid rain / is an acid gas / forms HNO₃ / NO₂ is toxic / photochemical smog
 Ignore references to water, breathing problems and ozone layer.
 Not greenhouse gas
- (e) Ensure the ammonia is used up / ensure complete reaction or combustion

OR

Maximise the yield of nitric acid or products

(f) Neutralisation

Allow acid vs alkali or acid base reaction

[14]

1

1

1

1

1